正保會(huì)計(jì)網(wǎng)校--正保遠(yuǎn)程教育旗下品牌網(wǎng)站

稅務(wù)網(wǎng)校

企業(yè)財(cái)稅會(huì)員更多服務(wù)>>

您的位置:正保會(huì)計(jì)網(wǎng)校 > 稅務(wù)網(wǎng)校 > 涉稅會(huì)計(jì) > 其它稅類 > 正文

預(yù)測技術(shù)之一——回歸分析

2015-10-28 09:09 來源:正保會(huì)計(jì)網(wǎng)校   我要糾錯(cuò) | 打印 | | |

  任何企業(yè)的管理都涉及一個(gè)至關(guān)重要的職能,即對(duì)未來制度規(guī)劃,對(duì)經(jīng)濟(jì)狀況的經(jīng)驗(yàn)判斷,直覺與意識(shí)也許能使企業(yè)領(lǐng)導(dǎo)人對(duì)未來狀況有一個(gè)大致的了解,然而,這種經(jīng)驗(yàn)判斷必須由各種定量分析方法提供支持,定量分析可用于各種預(yù)測,比如預(yù)測下一個(gè)季度的銷售額,或者預(yù)測引進(jìn)新產(chǎn)品線的可行性等,除定量分析外,在決策制定中還需要考慮到不確定性程度,公司面臨一定程度的不確定性,必須依賴各種定量分析方法來輔助制定更好的決策,公司可以利用各種預(yù)測技術(shù)就未來的財(cái)務(wù)績效制定計(jì)劃,定量分析方法包括回歸分析,時(shí)間序列分析,平滑法分析,學(xué)習(xí)曲線分析,期望值分析以及敏感性分析;定量分析法,在對(duì)未來制度計(jì)劃時(shí),公司會(huì)面臨一定程度的不確定性,必須依賴各種定量分析方法來輔助制定更好的決策,我們從三個(gè)領(lǐng)域相關(guān)的定量分析方法:數(shù)據(jù)分析涉及分析給定的數(shù)據(jù)集,以確定這些數(shù)據(jù)之間的關(guān)系和數(shù)據(jù)模式,使用數(shù)據(jù)分析,人們可以基于給定的條件,預(yù)測未來的結(jié)果,即回歸分析;或者基于既定的模式,預(yù)測未來的結(jié)果,即時(shí)間序列分析和平滑法分析;建模涉及構(gòu)建一個(gè)數(shù)學(xué)模式,以確立不同因素之間的關(guān)系,學(xué)習(xí)曲線分析就是一種模型,他可用于確定當(dāng)產(chǎn)品生產(chǎn)數(shù)量發(fā)生變化時(shí),產(chǎn)品生產(chǎn)所需的時(shí)間會(huì)如何變化。

  決策理論處理不確定性問題,考察未來可能出現(xiàn)的各種結(jié)果以及這些結(jié)果出現(xiàn)的可能性,期望值和敏感性分析是處理不確定性的兩種方法。

  回歸分析(regression analysis)是確定兩種或兩種以上變量間相互依賴的定量關(guān)系的一種統(tǒng)計(jì)分析方法。運(yùn)用十分廣泛,回歸分析按照涉及的因變量的多少,分為回歸和多重回歸分析;按照自變量的多少,可分為一元回歸分析和多元回歸分析;按照自變量和因變量之間的關(guān)系類型,可分為線性回歸分析和非線性回歸分析。如果在回歸分析中,只包括一個(gè)自變量和一個(gè)因變量,且二者的關(guān)系可用一條直線近似表示,這種回歸分析稱為一元線性回歸分析。如果回歸分析中包括兩個(gè)或兩個(gè)以上的自變量,且因變量和自變量之間是線性關(guān)系,則稱為多元線性回歸分析。

  回歸分析是應(yīng)用極其廣泛的數(shù)據(jù)分析方法之一。它基于觀測數(shù)據(jù)建立變量間適當(dāng)?shù)囊蕾囮P(guān)系,以分析數(shù)據(jù)內(nèi)在規(guī)律,并可用于預(yù)報(bào)、控制等問題。

  方差齊性線性關(guān)系效應(yīng)累加變量無測量誤差變量服從多元正態(tài)分布觀察獨(dú)立模型完整(沒有包含不該進(jìn)入的變量、也沒有漏掉應(yīng)該進(jìn)入的變量)

  誤差項(xiàng)獨(dú)立且服從(0,1)正態(tài)分布。

  現(xiàn)實(shí)數(shù)據(jù)常常不能完全符合上述假定。因此,統(tǒng)計(jì)學(xué)家研究出許多的回歸模型來解決線性回歸模型假定過程的約束。

  研究一個(gè)或多個(gè)隨機(jī)變量Y1 ,Y2 ,…,Yi與另一些變量X1、X2,…,Xk之間的關(guān)系的統(tǒng)計(jì)方法,又稱多重回歸分析。通常稱Y1,Y2,…,Yi為因變量,X1、X2,…,Xk為自變量;貧w分析是一類數(shù)學(xué)模型,特別當(dāng)因變量和自變量為線性關(guān)系時(shí),它是一種特殊的線性模型。最簡單的情形是一個(gè)自變量和一個(gè)因變量,且它們大體上有線性關(guān)系,這叫一元線性回歸,即模型為Y=a+bX+ε,這里X是自變量,Y是因變量,ε是隨機(jī)誤差,通常假定隨機(jī)誤差的均值為0,方差為σ^2(σ^2大于0)σ^2與X的值無關(guān)。若進(jìn)一步假定隨機(jī)誤差遵從正態(tài)分布,就叫做正態(tài)線性模型。一般的情形,它有k個(gè)自變量和一個(gè)因變量,因變量的值可以分解為兩部分:一部分是由于自變量的影響,即表示為自變量的函數(shù),其中函數(shù)形式已知,但含一些未知參數(shù);另一部分是由于其他未被考慮的因素和隨機(jī)性的影響,即隨機(jī)誤差。當(dāng)函數(shù)形式為未知參數(shù)的線性函數(shù)時(shí),稱線性回歸分析模型;當(dāng)函數(shù)形式為未知參數(shù)的非線性函數(shù)時(shí),稱為非線性回歸分析模型。當(dāng)自變量的個(gè)數(shù)大于1時(shí)稱為多元回歸,當(dāng)因變量個(gè)數(shù)大于1時(shí)稱為多重回歸。

  回歸分析的主要內(nèi)容為:

 、購囊唤M數(shù)據(jù)出發(fā),確定某些變量之間的定量關(guān)系式,即建立數(shù)學(xué)模型并估計(jì)其中的未知參數(shù)。估計(jì)參數(shù)的常用方法是最小二乘法。

 、趯(duì)這些關(guān)系式的可信程度進(jìn)行檢驗(yàn)。

 、墼谠S多自變量共同影響著一個(gè)因變量的關(guān)系中,判斷哪個(gè)(或哪些)自變量的影響是顯著的,哪些自變量的影響是不顯著的,將影響顯著的自變量入模型中,而剔除影響不顯著的變量,通常用逐步回歸、向前回歸和向后回歸等方法。

  ④利用所求的關(guān)系式對(duì)某一生產(chǎn)過程進(jìn)行預(yù)測或控制;貧w分析的應(yīng)用是非常廣泛的,統(tǒng)計(jì)軟件包使各種回歸方法計(jì)算十分方便。

  在回歸分析中,把變量分為兩類。一類是因變量,它們通常是實(shí)際問題中所關(guān)心的一類指標(biāo),通常用Y表示;而影響因變量取值的的另一類變量稱為自變量,用X來表示。

  回歸分析研究的主要問題是:(1)確定Y與X間的定量關(guān)系表達(dá)式,這種表達(dá)式稱為回歸方程;(2)對(duì)求得的回歸方程的可信度進(jìn)行檢驗(yàn);(3)判斷自變量X對(duì)因變量Y有無影響;(4)利用所求得的回歸方程進(jìn)行預(yù)測和控制。

  回歸分析的應(yīng)用:相關(guān)分析研究的是現(xiàn)象之間是否相關(guān)、相關(guān)的方向和密切程度,一般不區(qū)別自變量或因變量。而回歸分析則要分析現(xiàn)象之間相關(guān)的具體形式,確定其因果關(guān)系,并用數(shù)學(xué)模型來表現(xiàn)其具體關(guān)系。比如說,從相關(guān)分析中我們可以得知"質(zhì)量"和"用戶滿意度"變量密切相關(guān),但是這兩個(gè)變量之間到底是哪個(gè)變量受哪個(gè)變量的影響,影響程度如何,則需要通過回歸分析方法來確定。

  一般來說,回歸分析是通過規(guī)定因變量和自變量來確定變量之間的因果關(guān)系,建立回歸模型,并根據(jù)實(shí)測數(shù)據(jù)來求解模型的各個(gè)參數(shù),然后評(píng)價(jià)回歸模型是否能夠很好的擬合實(shí)測數(shù)據(jù);如果能夠很好的擬合,則可以根據(jù)自變量作進(jìn)一步預(yù)測。

  例如,如果要研究質(zhì)量和用戶滿意度之間的因果關(guān)系,從實(shí)踐意義上講,產(chǎn)品質(zhì)量會(huì)影響用戶的滿意情況,因此設(shè)用戶滿意度為因變量,記為Y;質(zhì)量為自變量,記為X.根據(jù)圖8-3的散點(diǎn)圖,可以建立下面的線性關(guān)系: Y=A+BX+§式中:A和B為待定參數(shù),A為回歸直線的截距;B為回歸直線的斜率,表示X變化一個(gè)單位時(shí),Y的平均變化情況;§為依賴于用戶滿意度的隨機(jī)誤差項(xiàng)。

  對(duì)于經(jīng)驗(yàn)回歸方程: y=0.857+0.836x回歸直線在y軸上的截距為0.857、斜率0.836,即質(zhì)量每提高一分,用戶滿意度平均上升0.836分;或者說質(zhì)量每提高1分對(duì)用戶滿意度的貢獻(xiàn)是0.836分。

  上面所示的例子是簡單的一個(gè)自變量的線性回歸問題,在數(shù)據(jù)分析的時(shí)候,也可以將此推廣到多個(gè)自變量的多元回歸,具體的回歸過程和意義請(qǐng)參考相關(guān)的統(tǒng)計(jì)學(xué)書籍。此外,在SPSS的結(jié)果輸出里,還可以匯報(bào)R2,F(xiàn)檢驗(yàn)值和T檢驗(yàn)值。R2又稱為方程的確定性系數(shù)(coefficient of determination),表示方程中變量X對(duì)Y的解釋程度。R2取值在0到1之間,越接近1,表明方程中X對(duì)Y的解釋能力越強(qiáng)。通常將R2乘以100%來表示回歸方程解釋Y變化的百分比。F檢驗(yàn)是通過方差分析表輸出的,通過顯著性水平(significant level)檢驗(yàn)回歸方程的線性關(guān)系是否顯著。一般來說,顯著性水平在0.05以上,均有意義。當(dāng)F檢驗(yàn)通過時(shí),意味著方程中至少有一個(gè)回歸系數(shù)是顯著的,但是并不一定所有的回歸系數(shù)都是顯著的,這樣就需要通過T檢驗(yàn)來驗(yàn)證回歸系數(shù)的顯著性。同樣地,T檢驗(yàn)可以通過顯著性水平或查表來確定。在上面所示的例子中,各參數(shù)的意義如下表所示。

  線性回歸方程檢驗(yàn)指標(biāo) 

指標(biāo)
顯著性水平
意義
 
R2
0.89
 
質(zhì)量解釋了89%用戶滿意度的變化程度
F
276.82
0.001
回歸方程的線性關(guān)系顯著
T
16.64
0.001
回歸方程的系數(shù)顯著
  示例 SIM手機(jī)用戶滿意度與相關(guān)變量線性回歸分析

 

  我們以SIM手機(jī)的用戶滿意度與相關(guān)變量的線性回歸分析為例,來進(jìn)一步說明線性回歸的應(yīng)用。從實(shí)踐意義講上,手機(jī)的用戶滿意度應(yīng)該與產(chǎn)品的質(zhì)量、價(jià)格和形象有關(guān),因此我們以"用戶滿意度"為因變量,"質(zhì)量"、"形象"和"價(jià)格"為自變量,作線性回歸分析。利用SPSS軟件的回歸分析,得到回歸方程如下:用戶滿意度=0.008×形象+0.645×質(zhì)量+0.221×價(jià)格對(duì)于SIM手機(jī)來說,質(zhì)量對(duì)其用戶滿意度的貢獻(xiàn)比較大,質(zhì)量每提高1分,用戶滿意度將提高0.645分;其次是價(jià)格,用戶對(duì)價(jià)格的評(píng)價(jià)每提高1分,其滿意度將提高0.221分;而形象對(duì)產(chǎn)品用戶滿意度的貢獻(xiàn)相對(duì)較小,形象每提高1分,用戶滿意度僅提高0.008分。

  方程各檢驗(yàn)指標(biāo)及含義如下:

指標(biāo)
顯著性水平
意義
 
R2
0.89
 
質(zhì)量價(jià)格解釋了89%用戶滿意度的變化程度
F
248.53
0.001
回歸方程的線性關(guān)系顯著
T(形象)
0.00
1.000
形象變量對(duì)回歸方程幾乎沒有貢獻(xiàn)
T(質(zhì)量)
13.93
0.001
質(zhì)量對(duì)回歸方程有很大貢獻(xiàn)
T(價(jià)格)
5.00
0.001
價(jià)格對(duì)回歸方程有很大貢獻(xiàn)

  從方程的檢驗(yàn)指標(biāo)來看,"形象"對(duì)整個(gè)回歸方程的貢獻(xiàn)不大,應(yīng)予以刪除。所以重新做"用戶滿意度"與"質(zhì)量"、"價(jià)格"的回歸方程如下: 滿意度=0.645×質(zhì)量+0.221×價(jià)格用戶對(duì)價(jià)格的評(píng)價(jià)每提高1分,其滿意度將提高0.221分(在本示例中,因?yàn)?quot;形象"對(duì)方程幾乎沒有貢獻(xiàn),所以得到的方程與前面的回歸方程系數(shù)差不多)。

  方程各檢驗(yàn)指標(biāo)及含義如下:

  

指標(biāo)
顯著性水平
意義
 
R
0.89
 
質(zhì)量價(jià)格解釋了89%用戶滿意度的變化程度
F
374.69
0.001
回歸方程的線性關(guān)系顯著
T(質(zhì)量)
15.15
0.001
質(zhì)量對(duì)回歸方程有很大貢獻(xiàn)
T(價(jià)格)
5.06
0.001
價(jià)格對(duì)回歸方程有很大貢獻(xiàn)
  回歸分析的步驟:確定變量明確預(yù)測的具體目標(biāo),也就確定了因變量。如預(yù)測具體目標(biāo)是下一年度的銷售量,那么銷售量Y就是因變量。通過市場調(diào)查和查閱資料,尋找與預(yù)測目標(biāo)的相關(guān)影響因素,即自變量,并從中選出主要的影響因素。

  建立預(yù)測模型依據(jù)自變量和因變量的歷史統(tǒng)計(jì)資料進(jìn)行計(jì)算,在此基礎(chǔ)上建立回歸分析方程,即回歸分析預(yù)測模型。

  進(jìn)行相關(guān)分析回歸分析是對(duì)具有因果關(guān)系的影響因素(自變量)和預(yù)測對(duì)象(因變量)所進(jìn)行的數(shù)理統(tǒng)計(jì)分析處理。只有當(dāng)變量與因變量確實(shí)存在某種關(guān)系時(shí),建立的回歸方程才有意義。因此,作為自變量的因素與作為因變量的預(yù)測對(duì)象是否有關(guān),相關(guān)程度如何,以及判斷這種相關(guān)程度的把握性多大,就成為進(jìn)行回歸分析必須要解決的問題。進(jìn)行相關(guān)分析,一般要求出相關(guān)關(guān)系,以相關(guān)系數(shù)的大小來判斷自變量和因變量的相關(guān)的程度。

  計(jì)算預(yù)測誤差回歸預(yù)測模型是否可用于實(shí)際預(yù)測,取決于對(duì)回歸預(yù)測模型的檢驗(yàn)和對(duì)預(yù)測誤差的計(jì)算;貧w方程只有通過各種檢驗(yàn),且預(yù)測誤差較小,才能將回歸方程作為預(yù)測模型進(jìn)行預(yù)測。

  確定預(yù)測值利用回歸預(yù)測模型計(jì)算預(yù)測值,并對(duì)預(yù)測值進(jìn)行綜合分析,確定最后的預(yù)測值。

  回歸分析注意的問題;應(yīng)用回歸預(yù)測法時(shí)應(yīng)首先確定變量之間是否存在相關(guān)關(guān)系。如果變量之間不存在相關(guān)關(guān)系,對(duì)這些變量應(yīng)用回歸預(yù)測法就會(huì)得出錯(cuò)誤的結(jié)果。

  正確應(yīng)用回歸分析預(yù)測時(shí)應(yīng)注意:①用定性分析判斷現(xiàn)象之間的依存關(guān)系;②避免回歸預(yù)測的任意外推;③應(yīng)用合適的數(shù)據(jù)資料;

我要糾錯(cuò)】 責(zé)任編輯:wcr
辦稅日歷