掃碼下載APP
及時(shí)接收考試資訊及
備考信息
安卓版本:8.7.50 蘋果版本:8.7.50
開發(fā)者:北京正保會(huì)計(jì)科技有限公司
應(yīng)用涉及權(quán)限:查看權(quán)限>
APP隱私政策:查看政策>
HD版本上線:點(diǎn)擊下載>
ACCA P4考試:Monte Carlo Simulation
Traditional sensitivity analysis can be used if one project variable changes independently of all others. However, some project variables may be interdependent (e.g. production volume and unit costs).
Simulation is a technique which allows more than one variable to change at the same time. The classic example of simulation is the "Monte Carlo" method which can be used to estimate not only a project's NPV but also its volatility.
Designing a Monte Carlo Simulation
An assessment of the volatility (or standard deviation) of the net present value of a project requires estimates of the distributions of the key input parameters and an assessment of the correlations between variables. Some of variables may be normally distributed (e.g. demand), but others may be assumed to have limit values and a most likely value (e.g. redundancy costs).
In its simplest form, Monte Carlo simulation assumes that the input variables are uncorrelated. More sophisticated modelling can, however, incorporate estimates of the correlation between variables.
Monte Carlo simulation then employs random numbers to select a specimen value for each variable in order to estimate a "trial value" for the project NPV. This is repeated a large number of times until a distribution of net present values emerges. This distribution will approximate a normal distribution.
Refinements such as the Latin Hypercube technique can reduce the likelihood of spurious results occurring through chance in the random number generation process.
Outputs From Monte Carlo Simulation
The output from the simulation will give the expected NPV for the project and a range of other statistics including the standard deviation of the output distribution.
In addition, the model can rank the significance of each variable in determining the project NPV.
Summary of Monte Carlo Simulation
1. Specify the major variables.
2. Specify the relationship between the variables.
3. Attach probability distributions (e.g. the normal distribution) to each variable and assign random numbers to reflect the distribution.
4. Simulate the environment by generating random numbers.
5. Record the outcome of each simulation.
6. Repeat simulation many times to obtain a frequency distribution of the NPV.
7. Determine the expected NPV and its standard deviation.
歷年樣卷
考試大綱
詞匯表
報(bào)考指南
考官文章
思維導(dǎo)圖
安卓版本:8.7.50 蘋果版本:8.7.50
開發(fā)者:北京正保會(huì)計(jì)科技有限公司
應(yīng)用涉及權(quán)限:查看權(quán)限>
APP隱私政策:查看政策>
HD版本上線:點(diǎn)擊下載>
官方公眾號(hào)
微信掃一掃
官方視頻號(hào)
微信掃一掃
官方抖音號(hào)
抖音掃一掃
Copyright © 2000 - odtgfuq.cn All Rights Reserved. 北京正保會(huì)計(jì)科技有限公司 版權(quán)所有
京B2-20200959 京ICP備20012371號(hào)-7 出版物經(jīng)營許可證 京公網(wǎng)安備 11010802044457號(hào)